If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2-20x+75=0
a = -4.9; b = -20; c = +75;
Δ = b2-4ac
Δ = -202-4·(-4.9)·75
Δ = 1870
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{1870}}{2*-4.9}=\frac{20-\sqrt{1870}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{1870}}{2*-4.9}=\frac{20+\sqrt{1870}}{-9.8} $
| 8=33/s | | 3/2x-2=7/8 | | 8x+0x=4+4 | | 5(2c+9)-3c(c+8)=-42 | | -5+7c=5-3c | | x-5/6+x+4/5=7/6 | | w-2w+2w=6 | | 4(c-5.25)=51 | | 3(2x-5=2(3x-2) | | 5x+3.50x=19 | | 10-3z=7z | | 5(x-20)=7x+30 | | 41/3=3p | | 2/3x=1/3x+11=8 | | 2(3g-2)=g/6 | | 9j+9=6j+1+3j | | .10x=35 | | 4(x-9)+2=4x+6 | | 2x-4(x-4)=-5+3x-19 | | -42=5(2c+9)-3c(c+8) | | 36=3(z-74) | | 4•x=3404 | | 4(r+2)-2r=8r-3 | | -6r+8=-5+8-6r | | 4w-7=3 | | x=1+16.2/31.8 | | 1/10)=(18.5/x | | 1÷2x-37=-84 | | j/3+10=13 | | -8r+8r=0 | | 2(5x-3)+3x=7 | | 6y-(-14-13y)=-24 |